Nexo documentation

This document contains information about data structure of NEXO protocol, as well as

examples of requests and responses.

Version of NEXO Sale Protocol to which this documentation refers is 3.1.

IMPORTANT: Before using the NEXO, please check whether the terminal protocol is set to
NEXO in the Settings -> Transaction settings -> ECR protocol.

Version control

Version of this documentation is 2.11.

Version

2.0

2.1

2.2

2.3

24

2.5

2.6

Date

28.11.2022

14.12.2022

05.01.2023

10.01.2023

11.01.2023

19.04.2023

20.04.2023

Changes
Creation of documentation version 2.0
Tweak of kotlin intent call example
Rework of kotlin intent call example

Added more detailed explanation of
SignatureRequired parameterin ProprietaryTags

(in Payment response)

Added second example of calling POl in Java using

registerForActivityResult

Added description of asynchronous call method of
POI

Added MerchantDisplayOutput to the

TransactionStatusResponse

Author

ML

ML

ML

ML

ML

ML

ML

Version Date
2.7 01.06.2023
2.8 16.11.2023
2.9 18.03.2024
2.10 18.03.2024
2.11 09.04.2024
Glossary

ECR
POS
POI
PED
NEXO

standards.org
JSON

Changes

Added additional description for SaleId, POIID,
MessageClass . FAQ section added

Fix of payment request schema - VariableSymbol

was missing in ProprietaryTags

Fix of duplicit chapers. Added mock responses info in
the Error handling section and FAQ

Added Tip transaction type in reconciliation (from

payment app version 4.10.0)

Added information about Intent launch of payment
app (queries tag needs to be added to
AndroidManifest in Android 11+)

Description

Electronic cash register

Author

ML

ML

ML

ML

ML

Point of Sale. This is the cash register (ECR), AKA Sale system. This term may

refer to the hardware or the software of the POS.

Point of Interaction. This is the payment terminal, AKA PED.

PIN Entry Device. Same as POI.

A standard protocol for communication between POS and POI. See nexo-

JavaScript Object Notation

https://www.nexo-standards.org/standards/nexo-acquirer-protocol
https://www.nexo-standards.org/standards/nexo-acquirer-protocol
https://www.nexo-standards.org/standards/nexo-acquirer-protocol
https://www.nexo-standards.org/standards/nexo-acquirer-protocol

Description

HyperText Transfer Protocol.The Nexo messages will be sent using HTTP over
TCP.

HTTP

POIID String that identifies POI. Generally we are using TID
TID Terminal identifier - string identifier assigned by card acquirer to the merchant

SN Serial Number. String that uniquely identifies terminal (physical device)

Communication protocol

There are 3 ways POS can communicate with the POI:

e HTTP POST call
e Android Intent call

e Cloud (Payment Middleware) call

HTTP POST call

Default port of NEXO HTTP service on POl is 7500.
Please ensure that the the devices (POS and POI) are on the same network before testing.

Each HTTP request must contain following headers:

Content-Type:application/json
Content-Length: <the length of the JSON request string (the HTTP body)>
Authorization: Basic base64(<username>:<password>)

Example:

Content-Type:application/json
Content-Length: 1024
Authorization: Basic dXNlcjpwYXNz

Authentication

Authentication of caller is performed by HTTP Basic Authentication. For more information

about HTTP Basic authentication, please visit this site.

e Default username: user

¢ Default password: pass

Example of HTTP Authentication header:

Authorization: Basic dXNlcjpwYXNz

Kotlin example of HTTP NEXO call:

val ip = "127.8.08.1"

val port = 7500

val auth = "dXNIlcjpwYXNz"

val url = URL("http://Sip:Sport")

try {
val connection = url.openConnection() as HttpURLConnection
this.httpConnection = connection

connection.requestMethod = "POST"
connection.setRequestProperty("Authorization", "Basic Sauth")
connection.setRequestProperty("Content-Type", "application/json")

connection.doInput = true
connection.doOutput = true
connection.connectTimeout = 1000
connection.readTimeout = 60_000

val os = connection.outputStream
os.write(request.toByteArray())
os.close()

val response = connection.inputStream.readBytes()
//TODO process response
} catch (e: IOException)
//TODO Process error

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication

Android Intent call

If POl and POS are installed on the same Android device, you can call the POI using Android

Intent. The authentication in this case is not required.

Kotlin example:

First step is to register for activity result.

IMPORTANT: you need to call registerForActivityResult() before the Fragment or
Activity is created. In case of Fragment the last method you can call
registerForActivityResult() is onViewCreated() (For more information see Fragment

lifecycle). In case of Activity you need to call it in onCreate() .

activityResultLauncher = registerForActivityResult(
ActivityResultContracts.StartActivityForResult()
) { activityResult ->
val nexoResponse = activityResult?.data?.getStringExtra("NEXO_RESPONSE")
if(nexoResponse != null) {
//TODO process NEXO response
} else {
//TODO process error state

You can then use activityResultLauncher to launch the Intent when necessary.
IMPORTANT: you cannot launch the ActivityResultLauncher until the fragment or
activity’s Lifecycle has reached CREATED

IMPORTANT: Since Android 11 there is a behavior change that some apps will not provide

info via getLaunchIntentForPackage() unless you add queries tagto the AndroidManifest
like this:

<queries>

<package android:name="com.example.app" />

https://developer.android.com/guide/fragments/lifecycle
https://developer.android.com/guide/fragments/lifecycle
https://developer.android.com/guide/fragments/lifecycle
https://developer.android.com/guide/fragments/lifecycle
https://developer.android.com/reference/androidx/lifecycle/Lifecycle
https://developer.android.com/reference/androidx/lifecycle/Lifecycle
https://developer.android.com/reference/androidx/lifecycle/Lifecycle
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.State#CREATED
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.State#CREATED
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.State#CREATED

</queries>

Example:

val intent = context.packageManager.getlLaunchIntentForPackage("<package name>")
if(intent != null) {

intent.putExtra("NEXO_REQUEST", gson.toJson(nexoRequest))
intent.flags = ©

activityResultLauncher.launch(intent)
} else {

//TODO payment app was not found

Java example 1:

The old way of launching Intent. You may get a warning that startActivityForResult is

deprecated. If this is problem for you, please follow instructions of Java example 2

IMPORTANT: Since Android 11 there is a behavior change that some apps will not provide

info via getLaunchIntentForPackage() unless you add queries tag to the AndroidManifest
like this:

<queries>
<package android:name="com.example.app" />
</queries>

Example:

final Intent intent = context.getPackageManager().getlLaunchIntentForPackage("<pa
if(intent != null) {
intent.putExtra("NEXO_REQUEST", gson.toJson(nexoRequest));
intent.setFlags(9);
activity.startActivityForResult(
intent,
REQUEST_CODE

} else {

//TODO payment app was not found

You will receive response in the onActivityResult:

@0Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);
if(requestCode == REQUEST_CODE && resultCode == Activity.RESULT_OK && da
String response = data.getStringExtra("NEXO_RESPONSE");
if(response != null) {

//TODO process response
} else {

//TODO process error

}
} else {

//TODO

Java example 2:

The new way of launching Intent consists of multiple steps. First step is to register for activity
result.

IMPORTANT: you need to call registerForActivityResult() before the Fragment or
Activity is created. In case of Fragment the last method you can call

registerForActivityResult() is onViewCreated() (For more information see Fragment
lifecycle). In case of Activity you need to call it in onCreate() .

activityResultlLauncher = registerForActivityResult(
new ActivityResultContracts.StartActivityForResult(),
activityResult -> {
if(activityResult == null) {
//TODO process error
return;
}
final Intent data = activityResult.getData();
if(data == null) {

https://developer.android.com/guide/fragments/lifecycle
https://developer.android.com/guide/fragments/lifecycle
https://developer.android.com/guide/fragments/lifecycle
https://developer.android.com/guide/fragments/lifecycle

//TODO process error

return;
}
final String nexoResponse = data.getStringExtra("NEXO_RESPONSE"
if (nexoResponse == null) {

//TODO process error
} else {
//TODO process NEXO response

)

You can then use activityResultLauncher to launch the Intent when necessary.
IMPORTANT: you cannot launch the ActivityResultLauncher until the fragment or
activity’s Lifecycle has reached CREATED

IMPORTANT: Since Android 11 there is a behavior change that some apps will not provide

info via getLaunchIntentForPackage() unless you add queries tagto the AndroidManifest
like this:

<queries>
<package android:name="com.example.app" />

</queries>

Example:

Intent intent = getPackageManager().getLaunchIntentForPackage("<package name>");
if(intent != null) {
intent.setFlags(9);
intent.putExtra("NEXO_REQUEST", request);
activityResultLauncher.launch(intent);
} else {
//TODO payment app was not found

Cloud (Payment Middleware) call

If you want the POS to communicate with POI on different networks, you can use cloud call of
our Portal.

https://developer.android.com/reference/androidx/lifecycle/Lifecycle
https://developer.android.com/reference/androidx/lifecycle/Lifecycle
https://developer.android.com/reference/androidx/lifecycle/Lifecycle
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.State#CREATED
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.State#CREATED
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.State#CREATED

Cloud call of POI requires Launcher app to be installed on terminal

Architecture

Communication between POS (ECR) and POI (payment terminal) is always initiated by POS.

There are 2 ways of communication:

1. Synchronous - connection is opened until response is sent back, or connection is

broken:

For information about how to handle communication errors, please refer to the Error

handling chapter.

POS POI
NEXO JSON request
’.
Process request

O

NEXO JSON response

POS POI

2. Asynchronous - request is sent to POl and connection is closed by POS. POS is then
querying the POI for the status of the transaction (via TransactionStatusRequest), until

transaction is finished.

If you want to show transaction status message to the merchant (i.e. when the POI faces
customer and merchant cannot see it), the TransactionStatusResponse contains
(starting from version 3.35.2 of Payment app) MerchantDisplayOutput string about
status of the transaction on the POI (i.e. “Waiting for card”, “Insert PIN”, “Sending data to

host”).

POS POI

NEXO JSON request
’,
close connection
loop [i.e. every 1s]
TransactionStatusRequest
’,
TransactionStatusResponse
‘. ..
POS POI

NEXO message structure

Header

Each NEXO request and response contains MessageHeader object.

Example:

"MessageHeader": {
"MessageCategory": "Payment",
"MessageClass": "Service",
"MessageType": "Request",
"POIID": "TID@O1",
"ProtocolVersion": "3.1",
"SaleID": "123456",
"ServicelID": "62052376-280f-47d2-a012-729b21814791"

IMPORTANT: Service ID must be unique for the message pair. It is recommended to use

UUID as ServicelD

All of the fields in MessageHeader are mandatory in both request and response.

Meaning of header fields:

¢ MessageCategory
format: EnumString

Specifies intended action to be performed in POI. Supported values are:

o Payment - start payment/refund transaction

o Input - get information from user (confirmation, or asking question)

o Diagnosis - get information whether terminal functionality is ready/working
(printer, card readers, communication with host, etc.)

o Reconciliation - settlements

o TransactionStatus - status of previous transactions

o Reversal - payment reversal

o Admin - reboot device remotely

o Abort - aborting transaction in progress

¢ MessageClass
format: EnumString

Specifies initiator of operation. Supported values are:

o Device - operation initiated by POI (currently not implemented)

o Service - operation initiated by POS/ECR

¢ Messagelype
format: EnumString

Defines, whether the message is request, or response. Supported values:

o Request

o Response

e POIID
format: String, length: <1, 128>
Identifier of POI. Generally, the merchant TID (terminal ID assigned to merchant by

acquirer) is used, because multiple merchants may use the same payment app, so the

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

TID is used to identify the target merchant. You can find the TID in About screen of the
payment app.
In most cases though, the payment app is used only by single merchant - in this case you

can use device hardware/software identifier (i.e. device serial number) as POIID.

Since version 3.35.0, the Payment app contains Content provider, which allows you to get
current TID, and also list of available TIDs (if multimerchant is supported). You can find

more detailed information here.

¢ ProtocolVersion
format: String
Constant value of “3.1”

¢ SalelD
format: String, length: <1, 128>
Identification of the Sale system (POS/ECR). It is used to identify, from which POS/ECR
the request came from. For example hardware serial number of POS/ECR, or id of POS/
ECR software installation. If you are somehow missing this information, please create

SalelD yourself in a way, so that you can identify the POS/ECR in future.

SalelD is used mainly for debugging - if you receive issue report containing request/

response JSON, you can identify specific ECR/PQOS using SalelD

e ServicelD
format: String, length: <1, 128>
Identification of message pair. POl will return the same ServicelD in response as is in
request.
IMPORTANT: Service ID must be unique for the message pair. It is recommended to
use UUID or GUID as ServicelD

Request

Structure of NEXO request is as follows:

"SaleToPOIRequest": {
"MessageHeader": {

https://www.pc3000.sk/nexo/payment_app_provider.html
https://www.pc3000.sk/nexo/payment_app_provider.html
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

The content of the request depends on what the MessageCategory is.

Payment (Sale/Refund)

Request is initiated by POS with intent to start payment transaction - either sale, or refund.

POS POI User Authorization host

PaymentRequest

Start transaction
«

Present card

Insert PIN (if needed)

Authorize transaction

Authorization response

PaymentResponse

POS POI User Authorization host

Request

Detailed request JSON schema is here.
Payment request must contain PaymentRequest object.

Sale

In sale payment request the object PaymentData is optional. If the PaymentData object is not

part of the message, POl will treat it as a sale request. Example of payment sale request:

"SaleToPOIRequest": {
"MessageHeader": {
"MessageCategory": "Payment",
"MessageClass": "Service",
"MessageType": "Request",
"POIID": "TIDeO1",
"ProtocolVersion": "3.1",
"SaleID": "123456",
"ServicelID": "62052376-280f-47d2-a012-729b21814791"
¥
"PaymentRequest”: { /* mandatory */
"PaymentData": { /* PaymentData is optional in case of s
"PaymentType": "Normal" /* optional */
H
"PaymentTransaction”: { /* mandatory =x/
"AmountsReq": { /* mandatory =*/
“Currency": "EUR", /* mandatory */
"RequestedAmount”: 14.0, /* mandatory =*/
"TipAmount": 1.0 /* optional =*/

H
"SaleData": { /* mandatory */

"SaleTransactionID": { /* mandatory */
"TimeStamp": "2021-11-23T15:53:08.303+01
"TransactionID": "8c9c7chf-abdd-447d-ac7

https://pc3000.sk/nexo/nexoschemas/payment_request.html
https://pc3000.sk/nexo/nexoschemas/payment_request.html

Refund

In refund payment request the object PaymentData is mandatory, otherwise POl will treat it

as a sale request. Example of payment refund request:

"SaleToPOIRequest": {
"MessageHeader": {
"MessageCategory": "Payment",
"MessageClass": "Service",
"MessageType": "Request",
"POIID": "TIDOO1",
"ProtocolVersion": "3.1",
"SaleID": "123456",
"ServiceID": "62052376-280f-47d2-a012-729b2f814791"
H
"PaymentRequest": { /* mandatory */
"PaymentData": { /* mandatory =*/
"PaymentType": "Refund" /* mandatory =*/
H
"PaymentTransaction": { /* mandatory =x/
"AmountsReq": { /* mandatory */
"Currency": "EUR", /% mandatory */
"RequestedAmount"”: 14.0 /* mandatory =*/

H
"SaleData": { /* mandatory */

"SaleTransactionID": { /* mandatory =*/
"TimeStamp": "2021-11-23T15:53:08.303+01
"TransactionID": "8c9c7cbf-abdd-447d-ac7

Response

Detailed response JSON schema is here.
Response contains result of transaction.
The transaction is considered successful only when the parameter

PaymentResponse.Response.Result has value “Success”, otherwise, the transaction failed.

Brief description of structure of PaymentResponse (for more detailed information, please refer
to the JSON schema here):

¢ PaymentResult - contains information about amounts, card and payment data
o AmountsResp
= AuthorizedAmount - amount authorized by POI
= Currency - currency of transaction
o PaymentinstrumentData
= CardData
= EntryMode - enumeration. Supported values: MagStripe,
ContactlessMSR, ContactlessEMV, ICC, Keyed, RFID
= MaskedPan - masked card number. Only first 2 and last 4 digits are
visible, all other digits are shown as #
o PaymentType - Normal of Refund, depends on the type of payment in request
o Proprietary tags - additional information about transaction
= Aid - card application identifier (for more information see this article)
= ApplicationName - card application name
AuthorizationCode - authorization code from authorization host

Brand - brand of the card

CardPresentationMethod - specifies card input type

ReceiptDate - date printed on receipt

SequenceNumber - sequence number of transaction authorization host

SignatureRequired - whether the merchant should require customer to sign

the merchant receipt

Attention: when signature verification unsuccessful (i.e., merchant
cannot verify the signature is valid), the POS is responsible to call

reversal on POI

https://pc3000.sk/nexo/payment_response_schema.json
https://pc3000.sk/nexo/payment_response_schema.json
https://pc3000.sk/nexo/payment_response_schema.json
https://pc3000.sk/nexo/payment_response_schema.json
https://en.wikipedia.org/wiki/EMV#Application_selection
https://en.wikipedia.org/wiki/EMV#Application_selection

= TerminallD - merchant terminal identification
¢ POIData - information about transaction ID in POI and time of transaction in POI
e Response - contains information whether the transaction was successful
o Result - contains information whether the transaction was successful (either
Success or Failure)
o ErrorCondition - enumeration value identifying error that occurred. For more
information please refer to the Error handling chapter
o AdditionalResponse - string explanation of error (for logging purpose only - do not
show this value to customer)
¢ SaleData - contains SaleTransactionlD sent in the request
e PaymentReceipt - contains customer (CustomerReceipt) and merchant (CashierReceipt)

receipt with line by line text to be printed

Response example:

"SaleToPOIResponse": {
"MessageHeader": {
"MessageCategory": "Payment",
"MessageClass": "Service",
"MessageType": "Response",
"POIID": "TIDeO1",
"ProtocolVersion": "3.1",
"SaleID": "123456",
"ServicelID": "62052376-280f-47d2-a012-729b21814791"
H
"PaymentResponse”: {
"PaymentResult": {
"AmountsResp": {
"AuthorizedAmount": 14.0,
“"Currency": "EUR"
H
"PaymentInstrumentData"”: {
"CardData": {
"EntryMode" : "ContactlesseMV",
"MaskedPan": "AS##-####-#HH##H#-612

+
"PaymentInstrumentType": "Card"

"PaymentType": "Normal",

"ProprietaryTags": {
"Aid": "A0000000031010",
"ApplicationName": "Visa Debit",
"AuthorizationCode": "123456",
"Brand": "VISA",
"CardPresentationMethod": "CLESS",
"ReceiptDate": "2021-11-23T15:53:28.110+
"SequenceNumber": "1234567890",
"SignatureRequired": false,
"Terminalld": "TIDeO1"

}
H
"POIData": {
"POITransactionID": {
"TimeStamp": "2021-11-23T15:53:28.110+01
"TransactionID": "99523506-e118-4dc©-913
}
H
"Response”: {
"Result": "Success"
H
"SaleData": {
"SaleTransactionID": {
"TimeStamp": "2021-11-23T15:53:08.303+01
"TransactionID": "8c9c7cbhf-abdd-447d-ac7
}
H
"PaymentReceipt": [
{

"DocumentQualifier"”: "CustomerReceipt",
"OutputContent": {
"OutputFormat": "Text",
"OutputText": [

{

"Text": "-------
}
{

"Text": "24.11.2
}
{

"Text": "Receipt

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"TID:TID

"Karta:4

"AID: AO

"Visa De

{
"Text": "Predaj"
}.
{
"Text": "14.00 E
}.
{
lITethl : " "
}
{
lITethl : " "
}.
{
"Text": "Autoriz
)
{
"Text": "Sekvenc
}.
{
lITethl : " "
}.
{
lITethl : "o
)
{
lITethl : " "
)
{
lITethl : " "
}

H
"RequiredSignatureFlag”: false

"DocumentQualifier”: "CashierReceipt",
"OutputContent": {
"OutputFormat": "Text",
"OutputText": [

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"24.11.2

"Receipt

"TID:TID

"Karta:4

"AID: AO

"Visa De

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Text":

"Predaj"

"14.00 E

"Autoriz

"Sekvenc

"Koépia"

{
"Text": " "
}
]
t
"RequiredSignatureFlag": false
}
]
}
}
}
Reversal

Request is initiated by POS with intent to start reversal of previous payment transaction.

Request

Detailed request JSON schema is here.

Brief description of structure of ReversalRequest (for more detailed information, please refer
to the JSON schema here):

¢ OriginalPOlITransaction
o POlITransactionID
= TransactionID - contains transaction ID of previous transaction. It can be
found in PaymentResponse:
PaymentResponse.POIData.POITransactionID.TransactionID
= ReversalReason - enumeration, specifies the reason of reversal. Supported
values are
CustCancel - customer requested reversal
MerchantCancel - merchant requested reversal
Malfunction - suspected malfunction

Unable2Compl - card acceptor device unable to complete transaction

https://pc3000.sk/nexo/reversal_request_schema.json
https://pc3000.sk/nexo/reversal_request_schema.json
https://pc3000.sk/nexo/reversal_request_schema.json
https://pc3000.sk/nexo/reversal_request_schema.json

Example:

"SaleToPOIRequest": {
"MessageHeader": {
"MessageCategory": "Reversal",
"MessageClass": "Service",
"MessageType": "Request",
"POIID": "TID@O1",
"ProtocolVersion": "3.1",
"SaleID": "123456",
"ServicelID": "338c63c5-74b2-4f13-a0d3-99fe81452d0a"
}.
"ReversalRequest”: {
"OriginalPOITransaction": {
"POITransactionID": {
"TransactionID": "99523506-e118-4dc©-913

}I

"ReversalReason": "CustCancel"

Response

Detailed response JSON schema is here.

The reversal is considered successful only in case the ReversalResponse.Response.Result

value is “Success”

Example:

"SaleToPOIResponse": {
"MessageHeader": {

"MessageCategory": "Reversal",
"MessageClass": "Service",
"MessageType": "Response",

"POIID": "TIDeO1",

https://pc3000.sk/nexo/reversal_response_schema.json
https://pc3000.sk/nexo/reversal_response_schema.json

"ProtocolVersion": "3.1",
"SaleID": "123456",
"ServiceID": "338c63c5-74b2-4f13-a0d3-99fe81452d0a"

}
"ReversalResponse": {
"POIData": {
"POITransactionID": {
"TimeStamp": "2021-11-23T716:28:36.910Z",
"TransactionID": "a460791c-a002-4843-a3ca-12e046221eb4"
}
}.
"Response”: {
"Result": "Success"
}
}

Transaction Status

Request is initiated by POS with intent to retrieve status of previous or ongoing transaction.

Request

Detailed request JSON schema is here.

To retrieve information about transaction, you can use either

e SalelD of transaction (from
PaymentRequest.SaleData.SaleTransactionID.TransactionID)

e or ServicelD of transaction (from MessageHeader.ServiceID)

Example:

"SaleToPOIRequest": {
"MessageHeader": {

"MessageCategory": "TransactionStatus",

https://pc3000.sk/nexo/transaction_status_request_schema.json
https://pc3000.sk/nexo/transaction_status_request_schema.json

"MessageClass": "Service",

"MessageType": "Request",

"POIID": "TID@O1",

"ProtocolVersion": "3.1",

"SaleID": "123456",

"ServicelID": "22de8895-6271-480b-8735-a6ccd171951d"
}.
"TransactionStatusRequest": {

"MessageReference": {

"SaleID": "3d0e8d9%a-9a39-4020-89b9-1654d1d913b4"

Response

Detailed response JSON schema is here.
If the transaction on which the request refers is still ongoing, the POI will respond with
ErrorCondition IN_PROGRESS:

"SaleToPOIResponse": {
"MessageHeader": {
"MessageCategory": "TransactionStatus",

"MessageClass": "Service",
"MessageType": "Response",
"POIID": "123456",
"ProtocolVersion": "3.1",
"SaleID": "ECR123456",
"ServicelID": "3598d318-46f2-40df-bb83-713¢57301fa7"
H
"TransactionStatusResponse": {
"Response": {
"AdditionalResponse”: "Transaction in progress”,
"ErrorCondition": "IN_PROGRESS",
/* MerchantDisplayOutput added in version 3.35.2
"MerchantDisplayOutput": "Odosielanie dat",
"Result": "Failure"

https://pc3000.sk/nexo/transaction_status_response_schema.json
https://pc3000.sk/nexo/transaction_status_response_schema.json

If transaction is not found, the POI will respond with ErrorCondition
INVALID_TRN_REFERENCE :

"SaleToPOIResponse": {
"MessageHeader": {
"MessageCategory": "TransactionStatus",
"MessageClass": "Service",
"MessageType": "Response",
"POIID": "TID@G1",
"ProtocolVersion": "3.1",
"SaleID": "123456",
"ServicelID": "f1573d2d-7b44-438b-aac9-90c3408685e8"
H
"TransactionStatusResponse": {
"Response": {
"AdditionalResponse”: "Invalid transaction refer
"ErrorCondition": "INVALID_TRN_REFERENCE",
"Result": "Failure"

If the the transaction is found, the POI will respond with success, and the message contains

RepeatedMessageResponse:

"SaleToPOIResponse”: {
"MessageHeader": {
"MessageCategory": "TransactionStatus",
"MessageClass": "Service",
"MessageType": "Response",
"POIID": "TID0O1",
"ProtocolVersion": "3.1",
"SaleID": "123456",

"ServicelID": "22de8895-6271-480b-8735-a6ccd171951d"
s
"TransactionStatusResponse”: {
"RepeatedMessageResponse” : {
"MessageHeader": {
"MessageCategory": "Payment",
"MessageClass": "Service",
"MessageType": "Response",
"POIID": "TIDOO1",
"ProtocolVersion": "3.1",
"SaleID": "123456",
"ServicelID": "d2243162-65aa-42c6-abe1-3aeB76bb5218"
}.
"RepeatedResponseMessageBody": {
"PaymentResponse”: {
"POIData": {
"POITransactionID": {
"TimeStamp": "2021-11-24T12:13:46.811Z2",
"TransactionID": "0fdfad94-73d8-4a7f-8035-412fe2

H
"PaymentResult”: {

"AmountsResp”: {
"AuthorizedAmount”: 5.0,
"Currency": "EUR"
H
"PaymentInstrumentData”: {
"CardData": {
"EntryMode": "Contactless",
"MaskedPan": "AA4##-###H-####-6218"

H
"PaymentInstrumentType": "Card"

H

"PaymentType": "Normal",

"ProprietaryTags": {
"Aid": "A0000000032010",
"ApplicationName": "VISA Prepaid",
"AuthorizationCode": "123456",
"Brand": "VISA",
"CardPresentationMethod": "CLESS",
"ReceiptDate": "2021-11-24T12:13:46.811Z2",
"SequenceNumber": "1234567890",

"SignatureRequired": false,
"TerminalId": "TID@O1"

}
H
"Response": {
"Result": "Success"
H
"SaleData": {
"SaleTransactionID": {
"TimeStamp": "2021-11-24T12:13:46.362+0100",
"TransactionID": "3d0e8d9a-9a39-4020-89b9-1654d1
}
}
}
}
)
"Response": {
"Result": "Success"

Reconciliation (settlement)

Request is initiated by POS with intent to start reconciliation (settlement).

Request

Detailed request JSON schema is here.

There are 2 supported types of reconciliation:

¢ SaleReconciliation - X report (overview settlement - the counters are not reset)

e AcquirerReconciliation - Z report (daily settlement - counters are reset)

Example:

https://pc3000.sk/nexo/reconciliation_request_schema.json
https://pc3000.sk/nexo/reconciliation_request_schema.json

"SaleToPOIRequest": {
"MessageHeader": {
"MessageCategory": "Reconciliation",
"MessageClass": "Service",
"MessageType": "Request",
"POIID": "TID@61",
"ProtocolVersion": "3.1",
"SaleID": "123456",
"ServicelID": "3830102f-86a0-4b96-b194-66c55bcfcdca”

+
"ReconciliationRequest”: {
"ReconciliationType": "SaleReconciliation"
}
}
}
Response

Detailed response JSON schema is here.

The response contains information about all the counters on the POI.

PaymentInstrumentType is always Card

Section with Tips (ReconciliationResponse.TransactionTotals.PaymentTotals with

TransactionType ‘Tip’) added in version 4.10.0 of the payment app

Example:

"SaleToPOIResponse": {
"MessageHeader": {
"MessageCategory": "Reconciliation",
"MessageClass": "Service",
"MessageType": "Response”,
"POIID": "TID0O1",
"ProtocolVersion": "3.1",
"SaleID": "123456",
"ServiceID": "3830102f-86a0-4b96-b194-66c55bcfcdca”

https://pc3000.sk/nexo/reconciliation_response_schema.json
https://pc3000.sk/nexo/reconciliation_response_schema.json

}
"ReconciliationResponse”: {
"POIReconciliationID": 1,

"ReconciliationType": "SaleReconciliation",

"Response": {

"Result”: "Success"

}l

"TransactionTotals": [

{
"PaymentCurrency": "EUR",

"PaymentInstrumentType": "Card",

"PaymentTotals": [
{

“TransactionAmount" :

“TransactionCount":

"TransactionType":

“TransactionAmount" :

"TransactionCount":

"TransactionType":

"TransactionAmount" :

"TransactionCount":

"TransactionType":

"TransactionAmount" :

"TransactionCount":

"TransactionType":

"TransactionAmount":

"TransactionCount":
"TransactionType":

}I

6.0,

"Debit"

0.0,
9,

"Credit" //Refund transactions

0.0,
9,

“OneTimeReservation" //Preauthori

0.0,
9,
"CompletedReservation" //Preautho

0.0,
9,
"Failed"

{ //added in version 4.10.0 of the payment app

"TransactionAmount" :

"TransactionCount":

"TransactionType":

0.0, //Amount of transaction wi
0,

"Tip" //Transactions with tip

//Number of transactions with

Diagnosis

Request is initiated by POS with intent to get diagnostic data about state of POI.

Request

Detailed request JSON schema is here.

In the request, you can set whether the POI should check connection to the authorization

host in field HostDiagnosisFlag.

Example:

"SaleToPOIRequest": {

"MessageHeader": {
"MessageCategory": "Diagnosis",
"MessageClass": "Service",
"MessageType": "Request"”,
"POIID": "TIDOO1",
"ProtocolVersion": "3.1",
"SaleID": "123456",
"ServiceID": "168c5a30-3c76-4a1d-8cda-114¢23d1709d"

}.

"DiagnosisRequest": {
"HostDiagnosisFlag": true

https://pc3000.sk/nexo/diagnosis_request_schema.json
https://pc3000.sk/nexo/diagnosis_request_schema.json

Response

Detailed response JSON schema is here.

The response contains following information:

¢ DiagnosisResponse
o Response.Result - whether the diagnosis ended successfully
o HostStatus.IsReachableFlag - whether authorization host is reachable
o POlStatus
= CardReaderOKFlag - whether the card readers are OK
= CommunicationOKFlag - whether there is connection to the internet
= GlobalStatus - enumeration, status of the POI. Possible values are:
OK - The POl is ready to receive and process a request
Busy - The POI Terminal cannot process a request because another
processing is in
progress
Maintenance - The POl is in maintenance processing
Unreachable - The POl is unreachable or not responding
= PEDOKFlag - Indicates if the PED is working and usable
= PoiReady - wheter POl is ready to receive request

= PrinterOKFlag - whether the printer is working

Example:

"SaleToPOIResponse": {
"MessageHeader": {
"MessageCategory": "Diagnosis",
"MessageClass": "Service",
"MessageType": "Response",
"POIID": "TIDeO1",
"ProtocolVersion": "3.1",
"SaleID": "123456",
"ServicelID": "168c5a30-3c76-4a1d-8cda-114c23d1709d"
}

"DiagnosisResponse”: {

https://pc3000.sk/nexo/diagnosis_response_schema.json
https://pc3000.sk/nexo/diagnosis_response_schema.json

"HostStatus": {
"IsReachableFlag": true

}.

"POIStatus": {
"CardReaderOKFlag": true,
"CommunicationOKFlag": true,
"GlobalStatus": "OK",
"PEDOKFlag": true,
"PoiReady": true,
"PrinterOKFlag": true

}.

"Response”: {

"Result”: "Success"

Administration request

Request is initiated by POS with intent to reboot the device.
Request

Detailed request JSON schema is here.

Example:

"SaleToPOIRequest": {
"MessageHeader": {
"SaleID": "123456",
"MessageClass": "Service",
"POIID": "TID0O1",
"ServiceID": "168c5a30-3c76-4a1d-8cda-114c23d1709d",
"MessageType": "Request"”,
"ProtocolVersion": "1.0",
"MessageCategory": "Admin"

https://pc3000.sk/nexo/admin_request_schema.json
https://pc3000.sk/nexo/admin_request_schema.json

}
"AdminRequest": {
"Serviceldentification": "Reboot"

Response

The response is not specified. In case of successful request, the terminal will start rebooting.

Error handling

This chaper describes, how the error states should be handled.

Application errors

In general the NEXO request can end successfully or with an error. If request was successful,

the NEXO response will contain “Result”: “Success” in Response object.

In case of failure, the NEXO response will contain “Result”: “Failure” in Response object. In this

case, the response will also contain:

¢ AdditionalResponse - description why the request failed (only for logging purposes)

¢ ErrorCondition - enumeration of values, that caller may use to react to failure

Example:

"SaleToPOIResponse": {
"MessageHeader": {

"MessageCategory": "Payment",
"MessageClass": "Service",
"MessageType": "Response”,

"POIID": "TIDOO1",
"ProtocolVersion": "3.1",

"SaleID": "123456",

"ServiceID": "168c5a30-3c76-4a1d-8cda-114c23d1709d"
¥
"PaymentResponse”: {

"Response": {

"AdditionalResponse”: "Requested Transaction ID
"ErrorCondition”: "TRN_ALREADY_EXISTS",
"Result”: "Failure"
}
}
}
}
Invalid JSON

If the request message is not a valid JSON, the POI will respond with the following
HTTP body:

[“Bad JSON:[line]: [message]”] where [line] and [message] will contain the details of the error.

Invalid NEXO request

If the request message is valid JSON but not a valid NEXO request, a response generated

according to NEXO specification.

Example:

"SaleToPOIResponse": {
"MessageHeader": {
"SaleID": "123456",
"MessageClass": "Service",
"POIID": "TIDOO1",
"ServicelID": "168c5a30-3c76-4a1d-8cda-114¢c23d1709d",

"MessageType": "Response",
"ProtocolVersion": "3.1",
"MessageCategory": "Payment"

"PaymentResponse": {
"Response": {
"Result": "Failure",
"ErrorCondition": "MESSAGE_FORMAT_ERROR",
"AdditionalResponse”: "At top level,field SaleTO

Connection errors

During transaction processing, the connection between POS and POI could be lost at any

time.

IMPORTANT: If the connection between POS and POl is lost without response reaching
POS, the POS is responsible to call TransactionStatus request to obtain the result of the
transaction

Example:

POS POI
PaymentRequest
’,
Processing transaction
Connection lost
S D e E L PP PP PP PEPPEPEEPEEPEREPEry
Transaction completed
TrasactionStatusRequest
’,
TransactionStatusResponse
‘. ..
POS POI

ErrorCondition enumeration

In the following table is a list of possible values, which caller may expect.

Value

MESSAGE_FORMAT_ERROR

DEVICE_OUT_OF_ORDER

UNAVAILABLE_DEVICE

NOT_ALLOWED

Description

Request message has invalid format.
For example, some mandatory fields of

request are missing.

Device is not ready to process request.

For example due to maintenance.
The hardware is not available

A service request is sent during a

Value

UNAVAILABLE_SERVICE

LOGGED_OUT

BUSY

ABORTED

CANCELLED

IN_PROGRESS

INSERTED_CARD

Description

Service dialogue. A combination of
services not possible to provide.
During the CardReaderInit message
processing, the user has entered a card
which has to be protected by the POlI,
and cannot be processed with this
device request from the external, and

then the Sale System.

The service is not available (not
implemented, not configured, protocol

version too old...)
Not logged in
The system is busy, try later

The Initiator of the request has sent an
Abort message request, which was

accepted and processed.

The user has aborted the transaction
on the PED keyboard, for instance
during PIN entering.

The transaction is still in progress and
then the command cannot be

processed

If the Input Device request a
NotifyCardInputFlag and the Customer
enters a card in the card reader
without answers to the Input
command, the POI abort the Input
command processing, and answer a

dedicated ErrorCondition value in the

Value

UNREACHABLE_HOST

REFUSAL

INVALID_CARD

PAYMENT_RESTRICTION

WRONG_PIN

CARD_REMOVED_PREMATURELY

CARD_READ_TIMEOUT

LICENSE_EXPIRED

CURRENCY_INVALID

CURRENCY_DOES_NOT_MATCH_MERCHANT

Description

Input response message.

Acquirer or any host is unreachable or
has not answered to an online request,
so is considered as temporary
unavailable. Depending on the Sale
context, the request could be repeated

(to be compared with “Refusal”).

The transaction is refused by the host
or the rules associated to the card, and

cannot be repeated.

The card entered by the Customer
cannot be processed by the POI
because this card is not configured in

the system

Some sale items are not payable by the

card proposed by the Customer.

The user has entered the PIN on the
PED keyboard and the verification

fails.

User removed card before card

operation finished.

Timeout for card reading expired.
License of application is expired.
Unknown currency code in request.

Merchant does not support requested

currency.

Value Description

Transaction with specified
TRN_ALREADY_EXISTS

TransactionlD already exists.

REVERSAL_NO_REVERSIBLE_TRN No reversible transaction was found.

The transaction is not found (e.g. for a
NO_TRN_FOUND

reversal or a repeat)

Message reference for transaction
INVALID_TRN_REFERENCE

status operation is missing

Testing NEXO errors

Starting from version 3.36.0, you can simulate various response codes, when the app is in the
MOCK mode. For more info see this link.

https://www.pc3000.sk/nexo/payment_app_error_states_testing.html
https://www.pc3000.sk/nexo/payment_app_error_states_testing.html

